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Abstract

In this work, we present an experimental study of the wall confinement effect on the wake formation behind a circular

cylinder of diameter dc ¼ 10mm and of length Lc ¼ 30dc. The experiments were performed in a water tunnel with the

dimensions (length ¼ 300dc, height ¼ 3dc, span Lc ¼ 30dc). The confinement rate was r ¼ 1/3 and the Reynolds number

was in the range of 30–277. The experiments were done using 2-D PIV measurements. The first instability was delayed

by the confinement and the von Kármán vortices characteristics are different from the unconfined case. Proper

orthogonal decomposition (POD) of the flow was used for a filtering purpose and to extract the energetic contribution

of the different modes. A low-order representation of the flow, constructed from the first pair of modes in the well-

defined region of the flow, shows that von Kármán vortices are equivalent to vanishing progressive waves.

Measurements done above the cylinder show the presence of 3-D span instabilities showing great similarities with

‘‘Mode A’’ and ‘‘Mode B’’ found in the unconfined case.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the cylinder wakes in an infinite medium has a very important practical interest. In fact, the knowledge

of the generation mechanism of the large eddies behind obstacles, their shedding frequencies and their different scales

are very important in the design of structures exposed to fluid flows. We have restricted our attention to the range of

Reynolds number where there exists a laminar von Kármán vortex street. Much work has been devoted to these kinds

of flows. Williamson (1996) has given a review for unbounded flow past a circular cylinder, and many results were

gathered by Zdravkovich (1997, 2003). The presence of walls near the cylinder leads to a blockage. The effects due to

the confinement are more often studied numerically (Anagnostopoulos et al., 1996; Zovatto and Pedrizzetti, 2001; Carte

et al., 1995a, b; Guerrouache, 2000; Sahin and Owens, 2004), but the experimental results are scarce (Chen et al., 1995;

Coutanceau and Bouard, 1977).
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Nomenclature

A y-dependent complex vectors

a(n) POD temporal coefficient (m s�1)

B y-dependent complex vectors

bð1Þx y-dependent function

C dimensionless coefficient

C0 dimensionless coefficient

dc cylinder diameter (m)

Dv flow rate in the channel (m s�1)

E integer part function

Ec mean rotating kinetic energy (m2 s�2)

Enst spatial average Enstrophy of a vortex (s�2)

fSt Strouhal frequency (Hz)

fs Shedding frequency (Hz)

gð1Þx spatial function

gð1Þy spatial function

G spatial dependent function

j complex unit (j2 ¼ �1)
~k complex wavenumber

k0 wavenumber (m�1)

k00 damping coefficient (m�1)

LF formation length (m)

Lr recirculation region (m)

l y-dependent function

pð1Þx x-dependent function

Q Q criterion (s�2)

qð1Þx y-dependent function

qð1Þy y-dependent function

r confinement ratio

< temporal correlation tensor

Re Reynolds number (dimensionless)

S integration surface (m2)

Sv vortex area (m�2)

St Strouhal number (dimensionless)

Sign sign function

U velocity vector (m s�1)
~U velocity used in the G2 criterion (m s�1)

Um height-averaged velocity (m s�1)

UN free-stream velocity (m s�1)

urms axial root mean square velocity

V eigenvector of the correlation matrix

vrms normal root mean square velocity (m s�1)

x, y, z coordinate (m)

xs axial position of (vrms)max (m)

2D–2C–PIV two component velocities obtained by PIV

r gradient operator

Greek letters

a, b real coefficients

g gap parameter (dimensionless)

G vortex circulation

G* dimensionless vortex circulation

G2 for vortex center identification (dimensionless)

dm,n Kronecker symbol

D gap (m)

l eigenvalues of POD decomposition

W1 first complex mode

L wavelength (m)

r, y polar coordinate (m, rd)

n kinematic viscosity (m2 s�1)

U POD modes

w, x, z phases

o vorticity (s�1)

Os Strouhal pulsation (rd s�1)

Subscripts

ad relative to the advection velocity of the vortex

c critical

cl centreline value

loc local value

m height-average

max maximum

mean temporal average velocity of measurements

Superscripts

~ average calculated from neighbouring points

* dimensionless

e estimated

gap gap between cylinder and wall
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The flow around a circular cylinder in an infinite medium is conditioned by the Reynolds number Re ¼ U1dc=n
(where UN is the free-stream velocity, dc is the cylinder diameter, and n is the kinematic viscosity). When Reo5, the

creeping is characterised by the preponderance of the viscous effects (Coutanceau and Defaye, 1991; Williamson, 1996).

When 5oReo47, two steady recirculation regions are set up behind the cylinder. The size of the recirculation regions

were well-defined by Coutanceau and Defaye (1991). For ReE47, the wake becomes unstable, manifesting the

appearance of a vortex street. The shedding frequency is generally presented in a dimensionless form by the Strouhal

number, defined as St ¼ fsdc/UN. This instability is found to be a manifestation of a Hopf bifurcation (Provensal et al.,

1987). When 47pRep190, the Strouhal number is an increasing function of Reynolds number, and several authors

(Karniadakis and Triantafyllou, 1989; Williamson, 1996) tried to find universal expression for St ¼ f(Re). At ReE190,

occurs a first transition to three-dimensional (3-D) flow which is characterised by a discontinuity in the function

St ¼ f(Re). At ReE260, a second transition occurs which is also characterised by a discontinuity in St ¼ f(Re).

Williamson (1996) and Brede et al. (1996) showed that the two discontinuities appearing in the relation St ¼ f(Re) for
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190pRep260 are a consequence of two spanwise instabilities known as modes A and B. Mode A appears at ReE190,

and is characterised by a spatial scale LA ¼ 3� 4dc. Mode B appears gradually after mode A, and is characterised by a

spatial scale LB ¼ 0:9dc to 1dc. These instabilities can be highlighted by doing spatiotemporal cross-correlations in the

spanwise direction of the cylinder wake.

In the case of a cylinder between parallel walls, two additional parameters control the dynamics of the cylinder wake.

These latter are the gap parameter g ¼ D=dc (D is the distance between the cylinder and the nearest wall), and the

confinement ratio r ¼ dc=H (H is the distance separating the two walls). The critical Reynolds number, which is about

RecE47 in absence of confinement, increases with the confinement ratio and also the shedding frequency. By decreasing

the gap parameter, the von Kármán vortex street can be restricted to one row of vortices of the same sign (Zovatto and

Pedrizzetti, 2001). For very small gap parameters, the investigations of Bearman and Zdravkovich (1978), Sumer et al.

(1991), Lei et al. (1999), Price et al. (2002) have shown experimentally the suppression of the von Kármán vortex street.

In the literature, few works investigated in the cylinder wake between parallel walls (Coutanceau and Bouard, 1977;

Anagnostopoulos et al., 1996). These works, which are especially based on 2-D numerical simulations, have studied the

effect of the confinement ratio and of the gap parameter on the aerodynamical coefficients (drag and lift) or on the

Strouhal number. Braza et al. (2006) have presented both an experimental and numerical work for a confined cylinder

at ReE140 000 and insisted on the fact that confined configurations allow direct comparisons with 3-D Navier–Stokes

computations avoiding infinite (unbounded) conditions.

In this paper, an experimental investigation of a confined circular cylinder wake is presented. For this purpose, a

cylinder of 10mm diameter is placed in a channel with a rectangular cross-section of 300� 30mm2. The water channel

span is about 30dc. The Reynolds number range studied is small, and the upstream flow is laminar with no upstream

turbulence. The confinement ratio and the gap parameter are fixed in this study as r ¼ 1/3 and g ¼ 1. Measurements in

the cylinder wake were done using the particle image velocimetry (PIV) technique for the different flow regimes and in

different sections. The main objective of this work is to study the influence of confinement on the different flow regimes

and the reorganisation of the flow in the cylinder wake. It is essential also to add that such a case is more suitable for the

validation of numerical simulations than the unconfined case. The choice of this configuration was guided by the

numerical simulations of Carte et al. (1995a, b) and Guerrouache (2000) for r ¼ 1/3 and g ¼ 1.

2. Experimental set-up and measurement techniques

2.1. Experimental set-up

The hydraulic tunnel made up of transparent plexiglas is shown in Fig. 1(a). The test-section measures 3.3m in

length, 2a ¼ 0.3m in width and 2b ¼ 0.03m in height (Fig. 1(b) and (c)). It is fed by a tank where the water level is

maintained constant by an overflow. A cylinder of dc ¼ 10�2m in diameter is placed in the test-section perpendicularly

to the mean flow direction at Lb ¼ 1.67m from the entry. The gap parameter is g ¼ D=dc ¼ 1, where D is the distance

between cylinder and the nearest wall, and the confinement ratio is r ¼ dc=2b ¼ 1=3. The mean velocity flow in the

channel section upstream the cylinder was in the range 0.2–1.85 cm s�1.

2.2. Measurement techniques

The PIV system used for the determination of the velocity field was essentially composed of a CCD camera of

1600� 1186 pixels resolution (Dantec Dynamics Flow Sense M2/E 8 bits) with a Nikon (60mm) objective, a pulsed Nd-

Yag 15mJ Laser (New Wave Solo) and a ‘‘DANTEC’’ correlator. The whole system is driven by the ‘‘DANTEC’’

software ‘‘Flow Manager’’. The flow seeding was done by using 50 mm spherical polyamide particles. Three flow field

areas (measurement positions in Fig. 2(c) and (d)) were studied. The first one at z ¼ 0 with 0pxp8pdc and

�1:5dcpyp1:5dc, where x, y and z are respectively the axial, vertical and transverse coordinates (Fig. 1). The second

area (position 2) was at z ¼ 0 with 9dcpxp18dc and �1:5dcpyp1:5dc. The choice of the first two configurations was

conditioned by the presence of screws used to assemble the body of the channel. The third area position (position 3 in

Fig. 2(d)) was situated above the cylinder at y ¼ 1.25dc with 0pxp20dc and �7dcpzp7dc. The aim of measurements

in this third configuration is to detect any 3-D transition in the span direction of the flow.

For positions 1 and 2, the horizontal laser plane was reflected vertically at z ¼ 0 using a 451mirror. In these cases, the

camera was placed directly in front of the lateral wall flow. The physical field of view in the position 1 of measurement

was 81.73� 60.59mm2. A mask was applied to retain only 30mm in the y-direction from 60.59mm. In the position 2 of

measurement, the camera field of view was 180.8� 60.59mm2 and by applying a mask, only 30mm in the y-direction

was retained. For measurements at position 3, the laser was displaced to be in the plane y ¼ 1.25dc and the flow field is
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Fig. 1. Hydraulic channel: (a) schematic view of the setup; (b) face view; and (c) upper view.
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reflected towards the camera by the mirror. All the fields of view used in this case were 201.51� 147.77mm2. For the

measurements in configurations 1 and 2, the interrogation areas were 32� 32 pixels. For measurements in the plane

y ¼ 1.25dc, the interrogation areas were 16� 16 pixels. An adaptative cross correlation was used with an overlap of

50%. For the measurements in positions 1 and 2, the spatial resolutions are respectively Dx ¼ Dy ¼ 0:85mm and

Dx ¼ Dy ¼ 0:93mm at the same sampling frequency fe ¼ 15Hz and for a duration of 20 s. For the third position

measurement, we have Dx ¼ Dz ¼ 1:1mm for the same frequency and the duration is identical to that of the first two

configurations. Frequency analysis shows that the maximum shedding frequency for the flow range studied is about

1.4Hz. As the acquisition frequency is fe ¼ 15Hz, the experiment is considered as time resolved.
3. Coherent structures detection and proper orthogonal decomposition (POD) decomposition of the flow

3.1. Coherent structures detection

Coherent structure interaction and the mechanism of generation and dissipation constitute a fundamental topic in

fluid mechanics research, especially because they play an essential role in heat and mass transfer problems. The most

debated questions with coherent structures include: how do we detect the centre of a vortex, how do we define its limits

and how do we quantify its energy?
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Fig. 2. PIV measurements positions: (a) 3-D view of the measurement configurations 1 and 2; (b) 3-D view of measurement position 3;

(c) measurement positions 1 and 2; and (d) measurement position 3 (above the cylinder at y ¼ 2.75dc).
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Many criteria are used in practice (Haller, 2005) and they are always deduced from the velocity gradient tensor. The

vorticity magnitude is widely used to identify the coherent structures present in the flow. It is a Galilean invariant and is

defined for a 2-D flow as follows:

o ¼
1

2

qUy

qx
�

qUx

qy

� �
. (1)

The use of vorticity magnitude is successful in free shear flows. In our case, the presence of shear at the upper and the

lower wall deforms the vorticity patterns of the coherent structure.

An often used criterion for coherent structures detection is the second invariant of the velocity gradient tensor known

under the name of the Q criterion. It was proposed by Hunt et al. (1988), and it is defined for a 2-D flow by the

following relation:

Q ¼ �
1

2

qUx

qx

� �2

þ 2
qUx

qy

� �
qUy

qx

� �
þ

qUy

qy

� �2
" #

. (2)
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The Q criterion can be interpreted as a balance between the rotation rate and the strain rate. This criterion allows to

define the limit of a coherent structure from the positive values of Q. It is interesting to notice that this criterion is not

affected by the local shear.

For a 2-D fluid flow, Graftieaux et al. (2001) have proposed two kinematic criteria, G1 for the vortex centre

identification and G2 for a vortex core identification. As the G1 criterion is not Galilean-invariant but G2 is, we propose

in this work to use the extremum of the G2 criterion for the vortex centre identification. This criterion gives accurate

results in the vortex center identification in comparison with the vorticity magnitude or the Q criterion and it is defined

as follows:

G2ðPÞ ¼
1

S

Z
M2S

ðPM ^ ðUðMÞ � ~UðPÞÞÞ � ez

PMk k � UðMÞ � ~UðPÞ
�� �� dS, (3)

where ~UðPÞ ¼ ð1=SÞ
R

M 02S
UðM 0ÞdS, ez is a unit vector perpendicular to the velocity map, P is the point where the

criterion is calculated, and S is a local surface surrounding the point P. The local surface S can be chosen circular or

rectangular. For a large S, the small scales in the flow are filtered, so S should be as small as possible. The size of S

retained in our case is S ¼ 9DxDy. In the case of vector map with moderate resolution, the maximum of G2 is not a

point but a quasi-circular region. Then, it is assumed that the vortex centre is defined by the maximum of G2 and the

minimum of Uðx; y; tÞ �UadðtÞ, where Uad(t) is the advection velocity of the vortex at the time t. The advection velocity

Uad(t) is calculated in two steps. The first step consists in calculating an estimate Ue
adðtÞ of Uad(t) from the G2 criterion.

The value of Ue
adðtÞ is deduced from the vortex shifting between two successive velocity maps. After this, the vortex

centre is estimated recurrently using the G2 criterion and the minimum of Uðx; y; tÞ �Ue
adðtÞ until U

e
adðtÞ does not

change.
3.2. POD decomposition of the flow

The calculation of the vorticity, enstrophy or velocity gradient tensor is based on the derivatives of the velocity field

deduced from the PIV data. These measurements are generally noisy. By applying the derivatives, high noise frequencies

are amplified. For this reason, filtering was applied. The filter has to take into consideration the physics of the problem

studied. The use of homogeneous ones is not adequate in many cases (Geers et al., 2005). A POD decomposition of the

flow is a good solution, because it takes into account the energetic distribution of the flow and gives information about

the fluid energy distribution in the measurement domain for the acquisitions duration. The POD was introduced by

Lumley (1967) for turbulent flows. Sirovich (1987) has introduced the snapshot POD which is useful when the spatial

data size is much larger than the number of images, like PIV measurements. For this reason, the snapshot POD was

used in this work.

Let us consider a sequence of PIV velocity fields ½Uðx; y; t1Þ; . . . ;Uðx; y; tN Þ� taken at the discrete times t1; t2; . . . ; tN .

A POD decomposition of the flow consists in searching for a family of vectors Uð1Þðx; yÞ; . . . ;UðNÞðx; yÞ
� �

on which

U(x, y, t) can be decomposed as

Uðx; y; tkÞ ¼ Umeanðx; yÞ þ
XN

n¼1

aðnÞðtkÞU
ðnÞðx; yÞ (4)

with Umean is the mean time average velocity field, k 2 f1; . . . ;Ng and a(n)(t) is the coefficient relative to U(n)(x, y).

The modes U(n)(x, y) verify, in this case, the following relation:

hUðnÞ;UðmÞi ¼
Z

D

UðnÞðx; yÞ �UðmÞðx; yÞ dxdy ¼ dn;m, (5)

where

dn;m ¼
1 if n ¼ m;

0 if nam:

(

The temporal coefficients aðnÞðtjÞ verify the property

XN

j¼1

½aðnÞðtjÞa
ðmÞðtjÞ� ¼ lndn;m,

where ln is the eigenvalue associated to the spatial mode U(n)(x, y), and its weight in the flow.
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To filter the PIV signal, Eq. (4) is truncated at the order M (MoN) as follows:

Ufiltðx; y; tjÞ ¼ Umeanðx; yÞ þ
XM
n¼1

aðnÞðtjÞU
ðnÞðx; yÞ. (6)

According to Sirovich (1987), the representative POD modes (or M-POD modes) must satisfy at least:

XM
i¼1

li

,XN

i¼1

li

 !
X90%.

For more details of the method see Appendix A.1.
4. Results and discussion

In order to determine the upstream flow conditions, 2-D PIV measurements were made in different sections and

compared with the theoretical solution of Lundgren et al. (1964) (Fig. 3). The measurements are in good agreement with

the theoretical results. According to Fig. 3(a), the boundary layer thickness upstream the cylinder in the span direction

is about 5dc. The inflow may be considered uniform over 20dc which permits to make comparison with the numerical

2-D simulations of Carte et al. (1995a, b) and Guerrouache (2000).

In the presence of a cylinder, PIV measurements permit extracting statistical information about the cylinder wake and

decomposing the flow in three regimes like those found in the case of an unconfined cylinder (the steady 2-D, the

unsteady 2-D and 3-D transition regime). They are discussed in the next sections with the modes calculated for

measurement positions 1 and 2. Streamlines and path lines were calculated in the wake of the cylinder. The pathlines

calculation was done using a 4th-order Runge-Kuta scheme, and the particle velocity is obtained using a bilinear

interpolation. More details of this calculation scheme can be found in Harris et al. (1998).

For a fixed gap parameter and a confinement rate, the only parameter that controls the flow regime is the Reynolds

number defined in our case as Re ¼ Umaxdc=n where Umax ¼ ð3=2ÞUm and Um ¼ ð1=3dcÞ
R 1:5dc

�1:5dc
Umeanðx; yÞdy is the

height-averaged velocity given by PIV measurements, dc is the cylinder diameter and n is the kinematic viscosity of the

fluid. It can be noticed here, that in the gap between the cylinder and the wall, the gap-averaged velocity is Ugap
m ¼

Um=ð2rÞ ¼ Umax=ð3rÞ ¼ Umax because the confinement is r ¼ 1/3. Therefore, the Reynolds number previously defined is

the same as the Reynolds number defined from the gap-averaged velocity.

4.1. Statistical results

Measurements taken at position 1 allows us to extract information about the wake flow in order to make comparison

with a unconfined cylinder. In literature (Williamson, 1996; Paranthoën et al., 1999), the parameters most discussed are

the dimensionless centreline velocity U�cl, the maximum of the fluctuations urms, nrms of the velocity components at the

centreline, the formation length LF and the size of the mean recirculation region Lr.
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The dimensionless longitudinal centreline velocity downstream the cylinder is defined as U�cl ¼ Umeanðx; 0Þ=Um.

Fig. 4(a) gives the evolution of the centreline velocity with x-position for different Reynolds numbers. It also permits to

calculate the mean recirculation region Lr for different Reynolds numbers (Fig. 4(b)), in order to make comparison with

literature data obtained for unconfined cylinders. In Fig. 4(b), we distinguish two types of evolution. The first one, in

the steady regime, is characterised by a linear evolution of Lr with Re, and the second one in the unsteady regime

with Lr as a decreasing function of Re�0.4. The maximum of Lr ¼ f(Re) is obtained for the critical Reynolds number

Rec, where the first instability appears (Paranthoën et al., 1999). In our case, we found RecE108. This critical Reynolds

number is in good agreement with the simulation results: Carte et al. (1995a, b) have found RecE97.5, Guerrouache

(2000) has given RecE100 and Sahin and Owens (2004) obtained RecE101. The size of the mean recirculation region in

this confined case is greater than for the unconfined flows configuration (Fig. 4(b)). Its evolution with (Re�Rec) is

less important than nunconfined cases. This is due to walls effect which are flattening and stabilising the mean

recirculation region.

The quantities urms/Um and nrms/Um, are symmetrical about the centreline. The position on the centreline, where

urms/Um is maximum, defines the formation length LF (Williamson, 1996). Fig. 5(a) gives the evolution of the formation

length LF with the Reynolds number. It is a decreasing function with Re�Rec with exponent �0.3. It should be noticed

that urms/Um has two maxima shifted from the centreline, but the maximum of nrms/Um is on the centreline. The

x-position of this maximum s�s ¼ ðvrms=UmÞmax at the centreline is noted xs. It was found experimentally that the value

of s�s is an increasing function of Re�Rec with an exponent of 0.4 (Fig. 5(b)), while it is about 0.34 in the case of a
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Table 1

Summuary of the measured flow parameters

Re Re�Rec Um

(m s�1)

Lr/dc vrms

(m s�1)

xs/dc LF/dc Uad

(m s�1)

Yv/

3dc

ð1=2Þf s

(Hz)

k00 (� 105)

(m�1)

omax (s
�1)

for x ¼ 10dc

75 �65 0.0050 1.817 – – – – – – – –

87 �16 0.0058 2.009 – – – – – – – –

100 �7 0.0067 2.247 – – – – – – – 0.92

116 8 0.0077 2.350 0.0016 3.552 4.515 – – 0.30 – –

129 21 0.0086 2.236 0.0027 3.154 3.217 0.01062 0.279 0.35 �0.83 –

144 36 0.0096 2.134 0.0040 3.176 3.013 0.01112 0.279 0.38 – –

159 51 0.0106 2.032 0.0049 2.757 2.805 0.01276 0.304 0.43 �1.11 1.72

174 66 0.0116 1.964 0.0060 2.837 2.328 – – 0.46 – –

188 80 0.0126 1.907 0.0068 2.678 2.142 0.01448 0.297 0.50 �1.40 2.65

203 95 0.0135 1.884 0.0073 2.655 2.281 – – 0.53 – –

233 125 0.0155 1.805 0.0094 2.598 2.086 0.01689 0.297 0.61 �0.66 2.65

277 169 0.0185 1.658 0.0135 2.397 1.623 0.02081 0.297 0.72 �1.56 2.94
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Fig. 6. Flow downstream of the cylinder for Re ¼ 100: (a) Pathlines and (b) Vorticity and streamlines.
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unconfined cylinder (Paranthoën et al., 1999). It can be noticed also that xs is a decreasing function of Re�Rec with an

exponent of �0.13 (Table 1), while the exponent is about �0.4 in the unconfined cylinder case (Paranthoën et al., 1999)

(Fig. 5(b)), and xs is more affected by the confinement than s�s .

4.2. Steady regime

For ReoRecE108, the flow is characterised by two fixed counter-rotating vortices downstream of the cylinder

(Fig. 6(a) and (b)). The streamlines and the pathlines are confounded characteristics of a steady regime. The

confinement delays the appearance of the von Kármán vortex shedding which should be about ReE47 in an infinite

medium. The walls give an irrotational effect due to the blocking by the body. The flow downstream of the cylinder

(Fig. 6(b)) is constituted essentially of two fixed counter-rotating vortices located just behind the cylinder. The same

topology is found in the case of a cylinder placed in an infinite medium. The only difference found in our case is the

presence of a vorticity at walls which are opposite to the counter-rotating vortices.

4.3. Unsteady 2-D regime

When ReXRec, the wake becomes unstable with the appearance of the von Kármán vortices.

For Re ¼ 129 (Fig. 7), the G2 criterion allows to visualise a family of vortices (P1, P2) downstream the cylinder similar

to those found in infinite medium. This family of vortices interacts with the two walls and generates a second family of

vortices (P01;P
0
2). In fact, when the vortex P1 (resp. P2) is generated, the variation of vorticity near the lower (resp. upper)

wall is accompanied by an interaction with the boundary layer manifested by the ejection of a vortex P01 (resp. P
0
2) and a

rejection of the vortex P1, which has a positive circulation. This kind of interactions between the wall boundary layer

and a vortex is detailed in the works of Escriva (1999). A von Kármán vortex P2 (resp. P1) detached from the upper

(resp. lower) position of the cylinder does not remain in the upper (resp. lower) position like when the cylinder wake is

in infinite medium, but it crosses the channel in the y-direction and rolls over the lower wall (resp. upper wall). These

path intersections were observed by Guerrouache (2000) in their simulation. The generated vortex P01 is advected in the
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Fig. 8. G2 criterion for Re ¼ 159.
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Fig. 7. Flow downstream of the cylinder for Re ¼ 129: (a) velocity field; (b) vorticity and streamlines; (c) iso-G2 criterion; and (d)

pathlines.
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flow direction and coalesces with a vortex type P2 at x/dc ¼ 5 to form a single vortex (Fig. 7(c)). The same remarks are

also valid for the structures near the upper wall. For x/dc48, the positive and negative vortices are spatially reorganised

(Fig. 8). The distance between two similar vortices is L ¼ 3dc with a transverse spacing between vortex centres about 1dc

and it was found to be independent of Reynolds in the range RecpRep277. In order to have information about the

proper energy of the vortices in the cylinder wake, we have emphasise our analysis on the vortices placed for xX9dc.

Two fundamental quantities are calculated: the advection velocity of a vortex and its contour. The vortex center at the

time tj is given by the methodology cited before. Fig. 9 gives the x-position versus time of a vortex center for different

Reynolds numbers. It should be noticed that the y-position of the vortices was unchanged for xX9dc in the range

RecpRep277, and the advection velocity deduced from Fig. 9 is Uad � ð1:1� 1:2ÞUm (see Table 1). The vortices are in

reality oval (Fig. 10(b) and (c)), and the calculation of the local velocity Ulocðr; y; tÞ ¼ Uðx; y; tÞ �Uad (Fig. 10(b) and

(d)) of the vortex shows that the radial component is not zero (Fig. 10(d)). In our case, we define the vortex limits by the

positive values of the Q criterion around the vortex center. Its surface may be approximated (Fig. 10(a)) by a circle

adjusted on the vortex center, and having a radius equal to the distance between the vortex center to the nearest wall yv.

The vortex can be seen as a rotating disk with a proper surface Sv. This may be a good approach and does not affect the

calculations. Every point on the vortex surface is animated by a relative velocity defined in the vortex core as

Ulocðx; y; tÞ ¼ Uðx; y; tÞ �Uad. The mean rotating energy of the vortex is thus defined by

ECðtÞ ¼
1

Sv

ZZ
Sv

U2
locðx; y; tÞ

2
dS. (7)
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The dimensionless circulation of a vortex is defined as follows:

G�ðtÞ ¼
GðtÞ
2pn
¼

1

2pn

ZZ
Sv

oðx; y; tÞdS, (8)

where o(x, y, t) is the vorticity, G(t) is the circulation of the vortex and n ¼ 1:032� 10�6 m2 s�1 is the kinematic viscosity

of the fluid used at 25 1C.

The mean enstrophy of a vortex is defined in our case as

EnstðtÞ ¼
1

Sv

ZZ
Sv

o2ðx; y; tÞ

2
dS. (9)

Fig. 11(a) and (b) shows the degradation of G*(t) and the mean enstrophy during the vortex advection. At the highest

Reynolds number considered (Re ¼ 277), the decrease of enstrophy is the most important and it is essentially caused by

the increase of the dissipation, the non-linearity and 3-D effects.

The mean enstrophy is another way to express the rotating energy of a vortex. In fact, in 2-D potential flows the

conservation of enstrophy expresses the conservation of energy. So, it would be better to access to the rotating energy of

a vortex from vorticity, but the presence of vortex deformation and 3-D effects influence this correlation between mean

enstrophy and mean rotating energy of a vortex. In order to establish a relationship between EC(t) and Enst(t), we have

plotted in Fig. 12(a) and for one vortex the quantity: ð8p=SvÞECðtÞ ¼ f ½EnstðtÞ�. It was found that

8p
Sv

� �
ECðtÞ ¼ C EnstðtÞ þ C0, (10)

where C is a dimensionless coefficient dependent on the Reynolds number (Fig. 12(b)) and C0 2 ½0:1; 0:4� a bias. It

should be noticed that for a solid rotating disk, we have C ¼ 1 and C0 ¼ 0. This permits to conclude that the mean

enstrophy is equivalent to the proper rotating energy of a vortex and for Rep100, the vortices can be seen as solid

rotating disks and it is possible to neglect their deformation.

On the basis of the 2-D numerical studies of Carte et al. (1995a, b) and Guerrouache (2000) for r ¼ 1/3 and g ¼ 1, the

shedding frequency of vortices does not excced 2Hz in the Reynolds numbers range studied. Hence, the experience is

time resolved and permits the use of PIV to calculate the Strouhal number St ¼ f stdc=Umax. The PIV axial velocity at a

fixed point in the domain is T-periodic. The frequency fSt is obtained from a spectrum of the PIV axial velocity at a fixed

point in a domain containing vortices. Fig. 13 shows the evolution of St �Re with the Reynolds number in comparison

to 2-D simulations of Carte et al. (1995a, b) and Guerrouache (2000) for the same confinenment rate of our

experimental case. The evolution of St �Re ¼ f(Re) can also be found with the Reynolds for unconfined cases given by

Williamson (1992) which shows that the confinement shifts the evolution of St �Re ¼ f ðReÞ upwards. Our experimental

results are slightly higher than those obtained with these 2-D numerical simulations. In addition, by interpolating the
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recent stability analysis of Sahin and Owens (2004) for r ¼ 0.3 and 0.5, it was found that StE0.23 for Re ¼ Rec, which

is in good agreement with our experimental results. This result is in good agreement with the suggestions of Kang (2006)

that the Strouhal number increases with increasing blockage.

It should be noted that if the Strouhal number is defined from the maximum of the velocity in the gap between the

cylinder and the wall, i.e. its value is

Stgap ¼
f Stdc

Ugap
m

¼
f Stdc

Umax=ð1� rÞ
.

Therefore, the modified value will be Stgap � 0:153. These two values St and Stgap are to be compared to the value 0.2

which corresponds to the shedding in infinite fluid at ReE160.

4.4. Three-dimensional effects

Three-dimensional instabilities can be detected using PIV measurements above the cylinder. The analysis of the flow

above the cylinder in the range of Reynolds numbers RecpRep188, exhibits parallel rows shed behind the cylinder.

The presence of undulations on the vortex core is the trace of a spanwise instability characterised by a wavelength
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Fig. 14. Phase average of the velocity field at Re ¼ 159: (a) iso-contours of G2 criterion and (b) axial phase average velocity.

Fig. 15. Phase average of the velocity field for Re ¼ 277: (a) iso-contours of G2 criterion and (b) axial phase-averaged velocity.
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LA � 3dc. Fig. 14 presents the phase-averaged velocity in the third position at Re ¼ 159, and it exhibits the presence of

spanwise instability. This instability is similar to that of ‘‘Mode A’’, which appears for the case of an unconfined

cylinder at Re ¼ 195 (Williamson, 1996). It seems that the premature appearance of ‘‘Mode A’’ at this range of

Reynolds number is caused by the wall disturbance in the spanwise direction. By increasing the Reynolds number

(ReX233), the von Kármán eddies adopt a non-parallel pattern and there is appearance of dislocations in the flow

(Fig. 15). For the maximum Reynolds number studied (ReE277), the flow is similar to ‘‘Mode A*’’ found in the

unconfined case. At ReE400, the measurements taken above the cylinder highlight the appearance of only longitudinal

structures with a smaller scale (LB � dc) (Fig. 16). These structures are comparable to the ‘‘mode B’’ instabilities

present in the case of a cylinder placed in a free stream for ReX260 (Williamson, 1996). It should be noticed that the

instantaneous velocity field in position 3 exhibits the same topology with the phase-averaged one, but it was more

interesting to present the phase-averaged velocity for the different Reynolds numbers.
5. POD decomposition and flow analysis

The POD decomposition of the flow was applied to the three experimental configurations cited before. It was verified

that a number N ¼ 300 of snapshots was sufficient for a statistical convergence of the data for a given Reynolds

number. Table 2 shows a cumulative representation of the first six eigenvalues of the most energetic modes in both

positions 1 and 2. It is worth noting that the POD decomposition was applied to the first and the second measurement
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Fig. 16. Phase-average of the velocity field at Re ¼ 400: (a) iso-contours of G2 criterion and (b) axial phase-averaged velocity.

Table 2

Relative contribution, li=
P

ili of the first six eigenvalues for different Reynolds numbers

Re ¼ 129 Re ¼ 144 Re ¼ 159 Re ¼ 188 Re ¼ 233 Re ¼ 277

Position 1

Mode 1 0.453 0.446 0.455 0.456 0.462 0.450

Mode 2 0.431 0.437 0.444 0.445 0.446 0.417

Mode 3 0.021 0.028 0.027 0.026 0.021 0.023

Mode 4 0.021 0.027 0.026 0.026 0.015 0.022

Mode 5 0.012 0.009 0.008 0.009 0.015 0.009

Mode 6 0.009 0.008 0.008 0.009 0.005 0.009

Position 2

Mode 1 0.411 0.455 0.484 0.476 0.482 0.432

Mode 2 0.390 0.427 0.464 0.456 0.446 0.391

Mode 3 0.039 0.029 0.012 0.014 0.021 0.027

Mode 4 0.036 0.027 0.011 0.013 0.013 0.020

Mode 5 0.026 0.010 0.005 0.009 0.012 0.014

Mode 6 0.013 0.009 0.003 0.004 0.006 0.013
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positions separately. Hence, the issued spatial modes of each position should be interpreted independently and not as

necessarily belonging to the same spatial modes of the entire flow.

The reconstruction of filtered data on the basis of these modes permits to recuperate more than 91% of the

fluctuating flow energy since ð
P6

i¼1li=
PN

i¼1liÞX91%, which corresponds to more than 99% of the fluid energy when we

consider the mean velocity field:

ðhUmean;Umeani þ
PM

i¼1liÞ

hU;Ui

" #
499%.

The most energetic modes in position 1 of our measurements are the von Kármán harmonics. Their temporal

coefficients a(n)(t) are sinusoidal, and may be written as follow (Fig. 17):

aðnÞðtÞ ¼
ffiffiffiffiffiffiffi
2ln

p
cos E

nþ 1

2

� �
Ostþ xn

� 	
;

aðnþ1ÞÞðtÞ ¼
ffiffiffiffiffiffiffi
2ln

p
sin E

nþ 1

2

� �
OsOstþ xn

� 	
;

8>>><
>>>:

(11)

where fs is the shedding frequency, Os ¼ 2pf s and Eððnþ 1Þ=2Þ is the integer part of ðnþ 1Þ=2.
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Fig. 17. Time evolution of the seventh first coefficients a(n)(t) for Re ¼ 159, and for the second position.
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It was found that these temporal modes are paired at Re ¼ 100 for unconfined cylinder case (Ma et al., 2000). Ben

Chiekh et al. (2004) and van Oudheusden et al. (2005) have found similar results for a(1) and a(2) in turbulent flows. The

same remark can be made on the spatial coefficients U(n) which are also paired and which present a spatial pseudo-

periodicity of 3dc=E½ðnþ 1Þ=2� (Figs. 18 and 19, left columns). For the measurement position 2 (Figs. 18 and 19, right

columns), and in addition to the coherent modes found seen in position 1 of measurements with sinusoidal coefficients

(Fig. 19, right column), the presence of incoherent modes was found. The energetic weight of these modes is more

present in the second position, where the influence of the von Kármán vortex street is less intense. The incoherence of

these modes can be seen in the temporal coefficients associated to these modes as a(5) (Fig. 17) at Re ¼ 159 and its

spatial mode U(5) in Fig. 18. The impact of these incoherent modes grows when increasing the Reynolds number like

U(3) and U(4) at Re ¼ 277 (Fig. 19) and could be caused by a deterioration of the steadiness in the flow at higher

Reynolds numbers. Unfortunately, the analysis of the modes issued from the POD decomposition of the flow in

position 1 and 2 did not give information about the transitions due to 3-D effects. Only the decomposition of the flow in

position 3 informs about possible 3-D instabilities in the flow. Fig. 20 presents the first six energetic spatial POD modes

of the flow from position 3 for Re ¼ 159. The first and the second mode are conjugated, and they represent,

respectively, the trace of the von Kármán eddies and their respective temporal coefficients a(1) and a(2). The latter are

sinusoidal and periodic with a characteristic frequency of fs. But one can see that these rollers, which are parallel,

present traces of 3-D instabilities with a spatial periodicity in the spanwise direction of LA � 3dc. The G2 criterion

applied to the higher modes does not give interesting information, but it is to be noticed that a(3) and a(4) are periodic

with a characteristic frequency of 2fs. When the Reynolds number increases, the three-dimensionality grows. At

Re ¼ 277, the first and the second spatial POD modes (Fig. 21) show that von Kármán roller traces are not parallel but

with an arched shape, and the higher modes U(3), U(4), U(5) and U(6) present the trace of instabilities with longitudinal
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Fig. 18. The first six modes obtained downstream of the cylinder for Re ¼ 159 (vector fields and vorticity maps): left column for

position 1 of measurements and right column for the position 2 of measurements.
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Fig. 19. The first six modes obtained downstream of the cylinder for Re ¼ 277 (vector fields and vorticity maps): left column for

position 1 of measurements and right column for the position 2 of measurements.
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Re ¼ 159.
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topology. This phenomenon becomes more and more obvious in the higher modes by increasing the Reynolds number.

For example, at Re ¼ 400, Fig. 22 exhibits longitudinal spanwise instabilities with a length scale of LB � 1dc.

These longitudinal phenomena, which are more unstable, need a great number of modes U(i) to be correctly

reconstructed by POD.

The mode pairing observed in this work and also reported by Ma et al. (2000) represents in reality the demonstration

of vortex advection. In fact, the analysis of the POD paired modes in the second measurement position show that they
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Fig. 21. Iso-contours of G2 criterion applied to the first six most energetic modes for the third position measurements, and for

Re ¼ 277.
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may be written as a sum of vanishing progressive waves (see Appendix A.2) as follows:

aðnÞðtÞUðnÞ þ aðnþ1ÞðtÞUðnþ1Þ ¼ e j E nþ1
2ð Þ Ost� ~ksxð Þð ÞGn yð Þ

where ~ks ¼ k0s � jk00s is the wave complex number and where k00s is a damping coefficient.
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Fig. 22. Iso-contours of G2 criterion applied to the first six most energetic modes for the third position measurements at Re ¼ 400.
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It is to be noticed also that the damping coefficient of the vortices k00s is an increasing function of the Reynolds

number (i.e. of the shear). The exponential decrease of the energy of vortices as they are advected in the flow direction is

due to viscous effects and to the imposed shear which is about 2/bUmax at wall. The maximum vorticity values omax

obtained in the range of Reynolds number studied for x ¼ 13dc (see Table 1) allow us to say that the erosion of the

vortices is essentially due to the shear stress imposed (Paireau et al., 1997). Nevertheless, the vortices keep their integrity

and their size for a large distance downstream the cylinder.
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6. Conclusion

In this work, experimental investigation on the flow past a circular cylinder centred between parallel walls at low

Reynolds numbers was studied using 2D–2C–PIV. The confinement was fixed at r ¼ 1/3. Many differences were found in

comparison with the unconfined cylinder case. The von Kármán instability which appears for the unconfined cylinder case

at ReE47 is delayed to RecE108. It was also found that the wavelength of the von Kármán vortices is now about

L ¼ 3dc instead of 5dc to 6dc for the unconfined cylinder case. The analysis of the mean recirculation region and the rms

of the velocity were also affected by the confinement and they show a stabilising effect induced by the walls. It was also

noticed that the Strouhal number values are found to be in good agreement with the simulations of Sahin and Owens

(2004). The comparison with the unconfined case PIV measurements in the span direction of the flow shows the presence

of two types of 3-D instabilities similar to ‘‘Mode A’’ and ‘‘Mode B’’ for unconfined case in reference to Williamson

(1996). The first instability present at ReE159 is similar to ‘‘Mode A’’ and characterised by a wavelength of LA � 3dc. By

increasing the Reynolds number (ReX277), these instabilities become longitudinal and characterised by a wavelength of

Lb � 1dc. These longitudinal instabilities are similar to ‘‘Mode B’’ found in the unconfined case at ReE230–260. It seems

that the ‘‘Mode A’’ instability appears earlier in the confined case which may be due to wall perturbations.

POD decomposition of the flow was used in this work in order to analyse the energetic contributions of the different

modes, to extract the trace of the coherent structures present in the flow and to filter the different snapshots. The

decomposition of the flow in the far wake shows equivalence with the Fourier decomposition, and the flow may be

written as a sum of progressive damping waves (see Appendix A). We should also notice the presence of modes pairing

reported also by Ma et al. (2000). In perspective, this decomposition will be used in a model reduction problem.

Appendix A

A.1. Snpashot POD decomposition background

Let ½Uðx; y; t1Þ; . . . ;Uðx; y; tN Þ� be a sequence of PIV velocity fields taken at the discrete times t1; t2; . . . ; tN . In order to

calculate the different modes U(n)(x, y), we consider the temporal correlation matrix < of the fluctuating velocities

defined as

< ¼ ½<i;j � ¼
1

N

Z
D

½Uðx; y; tiÞ �Umeanðx; yÞ� � ½Uðx; y; tjÞ �Umeanðx; yÞ�dxdy. (A.1)

The matrix < is symmetric and positive. Let us note l14l2 � � �4lN40 the N eigenvalues associated to <, and V
(1), V(2),

y, V(N) their respective eigenvectors. The mode U(n)(x, y) is given by

UðnÞðx; yÞ ¼
XN

j¼1

V
ðnÞ
jffiffiffiffiffiffiffiffiffi

Nln

p Uðx; y; tjÞ. (A.2)

Finally, the velocity field can be written as

Uðx; y; tjÞ ¼ Umeanðx; yÞ þ
XN

n¼1

aðnÞðtjÞU
ðnÞðx; yÞ, (A.3)

where the coefficients a(n)(tj) satisfy the property

XN

j¼1

½aðnÞðtjÞa
ðmÞðtjÞ� ¼ lndn;m.

If hf ; gi is the time average of hf ; gi, and hf ; gi ¼
R
ðf xgx þ f ygyÞdxdy, we can write the eigenvalues of <

(which represent the energy weights of the different modes) as

hU;Ui ¼ hUmean;Umeani þ
XN

i¼1

li. (A.4)

It must also be noted that, after a POD decomposition of the flow, the time evolution of the vorticity field for time-

resolved measurements is obtained by the vorticity of the modes due to the linearity of the curl operator. We write

xðx; y; tjÞ ¼
1

2
r ^Uðx; y; tjÞ ¼

1

2
r ^Umeanðx; yÞ þ

1

2

XN

n¼1

aðnÞðtjÞr ^UðnÞðx; yÞ. (A.5)
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In reality, the modes do not directly represent the flow structures but they are representative of the different spatial

scales of the real coherent structures. The time-evolution of the coefficients a(n) is representative of the frequencies

present in the flow. The filtered PIV signal, obtained from POD decomposition at the M order, allows us to write

Ufiltðx; y; tjÞ ¼ Umeanðx; yÞ þ
XM
n¼1

aðnÞðtjÞU
ðnÞðx; yÞ, (A.6)

xðx; y; tjÞ ¼
1

2
r ^Umeanðx; yÞ þ

1

2

XM
n¼1

aðnÞðtjÞr ^UðnÞðx; yÞ, (A.7)

where

XM
i¼1

li

,XN

i¼1

li

 !
X90%.

A.2. Temporal and spatial modes analysis in position 2 of measurements

In the case of wakes (Ben Chiekh et al. (2004), van Oudheusden et al. (2005)), and generally in flows presenting

quasi-periodic moving vortices, the phenomenon of modes pairing is found. If U(n) and U(n+1) are two paired or

conjugated modes, then their temporal coefficients will be given by the Eq. (17) and hence aðnÞðtÞUðnÞ þ aðnþ1ÞðtÞUðnþ1Þ

can be written as

aðnÞðtÞUðnÞ þ aðnþ1ÞðtÞUðnþ1Þ ¼ ej E nþ1
2ð Þ Ost�ksxð Þð ÞGnðx; yÞ.

In the present study, especially, in the position 2 of measurements, the vortices are advected in the x-direction and the

effect of the recirculating region is negligible. The purpose is to show that paired modes can be written as follows:

aðnÞðtÞUðnÞ þ aðnþ1ÞðtÞUðnþ1Þ ¼ ej E nþ1
2ð Þ= Ost�ksxð Þð ÞGnðyÞ. (A.8)

For simplification purposes, we consider only the two first modes and the calculations will be identical in higher modes.

The two first functions a(1)(t) and a(2)(t) can be written as

að1ÞðtÞ ¼
ffiffiffiffiffiffiffi
2l1

p
cosðOstþ x1Þ; að2ÞðtÞ ¼

ffiffiffiffiffiffiffi
2l2

p
sinðOstþ x1Þ, (A.9)

where Os ¼ 2pf st.

Associating Uð1Þ and Uð2Þ, we define for this first pair of modes the complex function:

W1ðx; y; tÞ ¼ ejðOstþx1Þ
ffiffiffiffiffiffiffi
2l1

p
Uð1Þðx; yÞ � j

ffiffiffiffiffiffiffi
2l2

p
Uð2Þðx; yÞ

j k
. (A.10)

According to Eq. (A.8), W1 must be written as

W1ðx; y; tÞ ¼ ejðOs t� ~ks xÞG1ðyÞ, (A.11)

where ~ks ¼ k0s � jk00s is the wave complex number. Then, the partial derivatives are linked by

Os
qW1

qx
¼ � ~ks

qW1

qt
, (A.12)

with W1 given by Eq. (A.10), this relationship leads to:

k00S

ffiffiffiffiffi
l1

p
Uð1Þ þ k0s

ffiffiffiffiffi
l2

p
Uð2Þ þ

ffiffiffiffiffi
l1

p qUð1Þ

qx
¼ 0; k0S

ffiffiffiffiffi
l1

p
Uð1Þ � k00S

ffiffiffiffiffi
l2

p
Uð2Þ �

ffiffiffiffiffi
l2

p qUð2Þ

qx
¼ 0. (A.13)

The solution of this system, which is damped in the x-direction (with k00S40), is

Uð1Þ ¼ AðyÞ e�ðk
00
S�jk

0
S Þx þ BðyÞ e�ðk

00
Sþjk

0
S Þx; Uð2Þ ¼ j

ffiffiffiffiffi
l1
l2

s
ð�AðyÞ ejk

0
Sx þ BðyÞ e�jk

0
SxÞ e�k00x, (A.14)

where the components of A and B are complex.

If we choose the x-origin, so that the x-component of U(1) is

Fð1Þx ¼ bð1Þx ðyÞ cos ðk
0
SxÞ e�k00Sx, (A.15)
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then

Fð2Þx ¼ bð1Þx ðyÞ

ffiffiffiffiffi
l1
l2

s
sinðk0SxÞ e�k00Sx. (A.16)

We may notice that the normalisation of U(1) and U(2) in (A.14) implies l1 ¼ l2. This is confirmed by the experiment,

which shows that the first two eignevalues agree within 5% at maximum (see Table 2).

Using the incompressible continuity equation r:w1 ¼ 0, we obtain for the y-components of U(1) and U(2):

qFð1Þy

qy
¼ bð1Þx ðyÞ½k

0
S sinðk0SxÞ þ k00S cosðk0SxÞ� e�k00Sx;

qFð2Þy

qy
¼ bð1Þx ðyÞ

ffiffiffiffiffi
l1
l2

r
½k00S sinðk0SxÞ � k0S cosðk0SxÞ� e�k00Sx:

8>>>><
>>>>:

(A.17)

Experimentally, k00s =k0sis small (see Table 2). So,

qFð1Þy

qy
¼ bð1Þx ðyÞk

0
S sinðk0SxÞ e�k00Sx;

qFð2Þy

qy
¼ �bð1Þx ðyÞ

ffiffiffiffiffi
l1
l2

s
k0S cosðk0SxÞ e�k00Sx, (A.18)

and for the first pair of modes, we have

að1ÞFð1Þ þ að2ÞFð2Þ ¼ bð1Þx ðyÞ e
�k00s x cosðOst� k0sxÞ � k0s

Z y

0

bð1Þx ðZÞdZ
� �

e�k00s x sinðOst� k0sxÞ. (A.19)

The same results can be obtained for the second pair U(3) and U(4) at the frequency 2fs.

The examination of the experimental results for the far-wake measurements (position 2) conducts to factorising U(1)

and U(2) by sinusoidal functions of period 3dc in x:

Fð1Þ ¼ cos
2p
3dc

xþ z1

� �
gð1Þx signðyÞ � sin

2p
3dc

xþ z1

� �
gð1Þy

� 	
,

Fð2Þ ¼ sin
2p
3dc

xþ z1

� �
gð1Þx signðyÞ cos

2p
3dc

xþ z1

� �
gð1Þy

� 	
. (A.20)

In fact, if gð1Þx ðx; yÞ and gð1Þy ðx; yÞ are defined by

gð1Þx ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFð1Þx Þ

2
þ ðFð2Þx Þ

2
q

; gð1Þy ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFð1Þy Þ

2
þ ðFð2Þy Þ

2
q

The values of the ratios Fð1Þx ðx; yÞ=gð1Þx ðx; yÞ and Fð1Þy ðx; yÞ=gð1Þy ðx; yÞ, plotted in Fig. 23 for y=dc ¼ 0:4, 1.2, 1.8 and 2.8, are

typical sinusoidal functions. That justifies the form of the system of Eq. (A.20).

The two values of l1 and l2 are very close. The eigenvalues related to the same pair of modes verify

li � liþ1

liþ1










p3%.

Using (A.19) and (A.20), we can write

a 1ð ÞðtÞF 1ð Þ þ a 2ð ÞðtÞF 2ð Þ ¼
ffiffiffiffiffiffiffi
2l1

p g 1ð Þ
x cos 2pf st�

2p
3dc

xþ w1

� �
sign yð Þ

g 1ð Þ
y sin 2pf st�

2p
3dc

xþ w1

� �
2
6664

3
7775 (A.21)

Now, by doing the same operations to the other conjugated modes, we can also write for the von Kármán harmonics

of frequency i � f s:

aðiÞðtÞFðiÞ þ aðiþ1ÞðtÞFðiþ1Þ ¼
ffiffiffiffiffiffiffi
2li

p signðyÞ gðiÞx cos 2pE
i þ 1

2

� �
f s t�

x

3dc

� �
þ wi

� �

gðiÞy sin 2pE
i þ 1

2

� �
f s t�

x

3dc

� �
þ wi

� �
2
6664

3
7775. (A.22)
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Fig. 23. Spatial evolutions of the functions: (a) F1
x=gð1Þx , (b) F1

y=gð1Þy , (c) F1
x=gð1Þx for different y/dc values; and (d) F1

x=gð1Þy for different y/

dc values.
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Finally, the velocity field can be written as follows:

Ufiltðx; y; tÞ ¼ Umean þ
XEðM=2Þ

i¼1

ffiffiffiffiffiffiffi
2li

p signðyÞgðiÞx cos 2pE
i þ 1

2

� �
f st�

x

3dc

� �
þ wi

� �

gðiÞy sin 2pE
i þ 1

2

� �
f st�

x

3dc

� �
þ wi

� �
2
66664

3
77775þ

X
incoherent

aðiÞUðiÞ, (A.23)

where
P

incoherenta
ðkÞUðkÞ is the non coherent part (not related to the von Kármán vortices) of the POD decomposition.

Eq. (A.23) permits to see the travelling vortices as a sum of progressive damped waves (gðkÞx and gðkÞy are decreasing

functions of x). In order to verify the assumptions given by the Eq. (A.11), we restrict for simplification the calculations

to the first pair of POD modes and we have to compare the predicted form given by Eq. (A.19) with Eq. (A.21).

By identification, we obtain

ffiffiffiffiffiffiffi
2l1

p
gð1Þx ðx; yÞ signðyÞ ¼ bð1Þx ðyÞ e

�k00s x;
ffiffiffiffiffiffiffi
2l1

p
gð1Þy ðx; yÞ ¼ k0s

Z y

0

signðZÞbð1Þx ðZÞdZ
� 	

e�k00s x. (A.24)

To verify the validity of the Eq. (A.24) for x=dcX13, we can proceed in two steps. The first step consists in verifying

that the functions gð1Þx ðx; yÞ and gð1Þy ðx; yÞ can be written as

gð1Þx ðx; yÞ ¼ pð1Þx ðxÞq
ð1Þ
x ðyÞ; gð1Þy ðx; yÞ ¼ pð1Þx ðxÞq

ð1Þ
y ðyÞ. (A.25)

The second step consists in verifying that

pð1Þx ðxÞ ¼ a ek00Sx; qð1Þy ðyÞ ¼ b
Z y

0

signðZÞqð1Þx ðZÞdZ, (A.26a,A.26b)

where a and b are two constants.

The values of pð1Þx are estimated by averaging gð1Þx on the height of the channel. So, the function pð1Þx ðxÞ is defined as

pð1Þx ðxÞ ¼
1

3dc

Z 1:5dc

�1:5dc

gð1Þx ðx; yÞdy, (A.27)

noticing that the a value in Eq. (A.26a) may be arbitrarily chosen.

Fig. 24 gives the evolution of pð1Þx along the x-position for different Reynolds numbers. It is to be noted that for

xX13dc, function pð1Þx can be expressed as a decreasing exponential function with a slope k00 (see Table 1).
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We define the functions qð1Þx ðx; yÞ and qð1Þy ðx; yÞ by the following expressions:

qð1Þx ðx; yÞ ¼
gð1Þx

p
ð1Þ
x

; qð1Þy ðx; yÞ ¼
gð1Þy

p
ð1Þ
x

. (A.28)

Fig. 25(a)–(d) shows that q
ð1Þ
i ðx; yÞ � q

ð1Þ
i ðyÞ (for i 2 fx; yg) and the separation of variables Eq. (A.25) is well justified.
ln
 (

p x
(1

) )

-7.7

-7.2

-6.7

-6.2

-5.7

-5.2

18 dc

Re = 129
Re = 159
Re = 188
Re = 233
Re = 277

x-position

17 dc16 dc15 dc14 dc13 dc12 dc11 dc10 dc9dc

Fig. 24. Spatial evolution of pð1Þx for different Reynolds numbers.

Fig. 25. qð1Þx and qð1Þy versus y for different values of x/dc: (a) qð1Þx for Re ¼ 159; (b) qð1Þy for Re ¼ 159; (c) qð1Þx for Re ¼ 277; and (d) qð1Þy

for Re ¼ 277.
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Fig. 26. l�y and qð1Þ
�

y versus y for different values of x/dc: (a) Re ¼ 159 and (b) Re ¼ 277.
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Fig. 26(a) and (b) gives a comparison between the normalised functions

qð1Þ
�

y ¼ qð1Þy =qð1Þy ð0Þ (A.29)

and the quantity

l�ðyÞ ¼

Z y

0

signðZÞqð1Þx ðZÞdZ
� Z 1:5dc

0

signðZÞqð1Þx ðZÞdZ
� 	

.

The concordance between the two results permits to confirm that qð1Þy may be deduced from qð1Þx by integrating

Eq. (A.26a).

This result proves that, in our case, the paired modes in the position 2 of measurements satisfy Eqs. (A.8) and (A.11),

which permits also to see the flow as a sum of propagating vanishing waves.
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